💻코딩테스트/백준

[백준/C++] 1654번 : 랜선 자르기 (이분탐색 연습)

공대 컴린이 2023. 10. 13. 13:53
728x90

랜선 자르기

문제

집에서 시간을 보내던 오영식은 박성원의 부름을 받고 급히 달려왔다. 박성원이 캠프 때 쓸 N개의 랜선을 만들어야 하는데 너무 바빠서 영식이에게 도움을 청했다.

이미 오영식은 자체적으로 K개의 랜선을 가지고 있다. 그러나 K개의 랜선은 길이가 제각각이다. 박성원은 랜선을 모두 N개의 같은 길이의 랜선으로 만들고 싶었기 때문에 K개의 랜선을 잘라서 만들어야 한다. 예를 들어 300cm 짜리 랜선에서 140cm 짜리 랜선을 두 개 잘라내면 20cm는 버려야 한다. (이미 자른 랜선은 붙일 수 없다.)

편의를 위해 랜선을 자르거나 만들 때 손실되는 길이는 없다고 가정하며, 기존의 K개의 랜선으로 N개의 랜선을 만들 수 없는 경우는 없다고 가정하자. 그리고 자를 때는 항상 센티미터 단위로 정수길이만큼 자른다고 가정하자. N개보다 많이 만드는 것도 N개를 만드는 것에 포함된다. 이때 만들 수 있는 최대 랜선의 길이를 구하는 프로그램을 작성하시오.

입력

첫째 줄에는 오영식이 이미 가지고 있는 랜선의 개수 K, 그리고 필요한 랜선의 개수 N이 입력된다. K는 1이상 10,000이하의 정수이고, N은 1이상 1,000,000이하의 정수이다. 그리고 항상 K ≦ N 이다. 그 후 K줄에 걸쳐 이미 가지고 있는 각 랜선의 길이가 센티미터 단위의 정수로 입력된다. 랜선의 길이는 23^1-1보다 작거나 같은 자연수이다.

출력

첫째 줄에 N개를 만들 수 있는 랜선의 최대 길이를 센티미터 단위의 정수로 출력한다.

예제 입력 1

4 11
802
743
457
539

예제 출력 1

200

힌트

802cm 랜선에서 4개, 743cm 랜선에서 3개, 457cm 랜선에서 2개, 539cm 랜선에서 2개를 잘라내 모두 11개를 만들 수 있다.


해당 문제는 이분탐색을 활용해야 하는 문제로, 주어진 랜선 길이를 똑같은 길이로 잘라 N개 이상으로 나누어지도록 만들어야 한다.

 

#include <iostream>
#include <string>
#include <algorithm>
#include <vector>

using namespace std;

vector<long long> lan;
long long K, N;

long long SliceLANCount(int size)
{
	long long cnt = 0;
	for(int i = 0; i < lan.size(); i++)
		cnt += (lan[i] / size);

	return cnt;
}

int main()
{
	ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);

	cin >> K >> N;

	lan.resize(K);
	for (long long& l : lan)
		cin >> l;

	long long start = 1;
	long long end = *max_element(lan.begin(), lan.end())+1;
	long long result = 0;

	while(start <= end)
	{
		long long mid = (start + end) / 2;

		if (SliceLANCount(mid) >= N)
		{
			start = mid + 1;
			result = max(result, mid); // 없으면 실패!
		}
		else
			end = mid - 1;
	}

	cout << result;

	return 0;
}

 

코드를 바로 보면, 이분탐색의 시작 값을 1로 두고, 끝나는 값을 랜선의 가장 큰 길이로 설정하였다.

 

간단한 이분탐색 문제였지만 숨겨진 몇몇 함정때문에 여러번 실패가 떴다.

 

함정 1. 랜선의 길이가 "23^1-1" 이기 때문에, 이분탐색에 사용되는 변수의 크기를 long long으로 선언하지 않으면 오버플로우가 발생하여 실패한다.

함정 2. 자른 랜선의 개수가 N 개 "이상"으로 되면서 가장 길게 자를 수 있는 최대 길이를 구해야하므로, 이분탐색으로 N 이상의 길이를 찾고 나서도 범위를 더 좁혀 검사해봐야 한다.

 

따라서, (랜선의 자른 개수) >= N 인 경우, start = mid + 1;로 범위를 좁히고 자른 길이를 result 변수에 max 값으로 계속해서 초기화해주었다.

 

특히 두번째 함정을 발견하는게 오래걸려서 생각보다 시간이 많이 들어간 문제였다.


https://www.acmicpc.net/problem/1654

 

1654번: 랜선 자르기

첫째 줄에는 오영식이 이미 가지고 있는 랜선의 개수 K, 그리고 필요한 랜선의 개수 N이 입력된다. K는 1이상 10,000이하의 정수이고, N은 1이상 1,000,000이하의 정수이다. 그리고 항상 K ≦ N 이다. 그

www.acmicpc.net

728x90